
 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (200-204), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 200
Novelty Journals

Permission Analysis System for Android

Applications

K.KAVIYA
1
, S.V.HEMALATHA

2
, P.MEENAKSHI

3
, DR.K.VALARMATHI

4

1,2,3
Student,

4
Professor, Department of CSE, Panimalar Engineering College, Chennai, India

Abstract: Android applications are open source and can be developed by anybody, testing is not done. The

objective of this paper is to remove the unused/redundant permissions in the android applications by breaking it

and extracting the permissions to prevent the permission gap. High level Permission Checking Framework on

Android Applications that were previously uploaded by breaking the .apk files to analyze in code level by

decompiling it in a efficient way. This is a compositional analysis for Android inter app vulnerabilities. Both

developer and user can test and modify manifest file of an application.

Keywords: Android SDK, JDK, Apache ANT, APK, QR codes, dalvik byte code, DEX.

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (200-204), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 201
Novelty Journals

1. INTRODUCTION

Android applications are usually developed in the Java language using the Android Software Development Kit. Once

developed, Android applications can be packaged easily and sold out either through a store such as Google Play,

SlideME, Opera Mobile Store,Mobango,F-droid.

Applications for Android are written in Java and compiled into Dalvik byte code. Dalvik byte code is optimized to run on

devices where memory and processing are scarce. An Android application is packaged into an Android package file which

contains the Dalvik byte code, data (pictures, sounds. . .) and a metadata file called the ―manifest‖. The application’s

developer has declared permissions in the application manifest. For installing an application, the user has to approve all

the permissions. If all permissions are approved then the application is installed and receives group memberships. The

group memberships are used to check the permissions at runtime. Missing permission causes the application to crash.

Adding too many of them is not secure. In the latter case, injected malware can use those unused permissions to achieve

malicious goals. The unused permissions are called as ―permission gap‖. Any permission gap results in insecure,

suspicious or unreliable applications

2. RELATED WORKS

Android security has received a lot of attention in recently published literature, due mainly to the popularity of Android as

a platform of choice for mobile devices, as well as increasing reports of its vulnerabilities. Here, we provide a discussion

of the related efforts in light of our research.

A large body of work [7], [10], [13], [19] focuses on performing program analysis over Android applications for security,

which can be categorized based on their underlying static or dynamic analysis technique. FlowDroid [20] introduces a

precise approach for static taint flow analysis in the context of each application component. CHEX [16] also takes a static

method to detect component hijacking vulnerabilities within an app.Apart from techniques based on static analysis,

several tools use dynamic analysis to detect vulnerabilities in smart phone applications. TaintDroid [3] detects information

leak vulnerabilities using dynamic taint flow analysis at the system level.

3. PROBLEM DEFINITION

As android applications are open source and can be developed by anybody, testing is not mandatory and hence it is more

vulnerable. Android application developed by users are directly uploaded to Google play store and no code level testing’s

are done. Since the developers upload only compiled, packed (.apk) files no further investigation is done on the

application.

A basic call graph can only give the number of permission checks but not the actual names of the checked permissions

because of the lack of string analysis to extract permission names from the byte code CHA-Android which leverages the

service redirection, service identity inversion and entry point construction components.

Spark specific issues such as entry point initialization or Android specific issues such as service initialization. Spark to get

a first understanding of the main problems that occur when analyzing the Android API. This gives us a key insight, Spark

discards 96 percent of the API methods to be analyzed. The reason is that Spark does not work on receiver objects whose

value is null.

4. PROPOSED WORK

We propose a High level Permission Checking Framework on Android Applications that were previously uploaded by

breaking the .apk files to analyze in code level by decompiling it in a efficient way. We also innovate to recompile the

vulnerable free code for secure use with the end users. We further make a proposal to Google Play Services to implement

this kind of Frameworks so as to avoid Fake Applications that steals user’s Private data and make some vulnerability.

Android 2.2 defines 134 permissions in the android. Manifest permission system class, whereas Android 4.0.1 defines 166

permissions. This gives us an upper-bound on the number of permissions which can be checked in the Android

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (200-204), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 202
Novelty Journals

framework. Android has two kinds of permissions: ―high-level‖ and ―low-level‖ permissions. High-level permissions are

only checked at the framework level (that is, in the Java code of the Android SDK). We focus on the high-level

permissions that are only checked in the Android Java framework Compositional analyses for extracting permission

checks. In essence, each analysis constructs a call graph from the byte code, finds permission check methods and extracts

permission names.

We have presented a generic approach to reduce the attack surface of permission-based software in order to automatically

add or remove permission enforcement points at the level of application or the framework.

Fig.1 Overview of permission analysis system

5. WORKING MODEL

5.1 Login / Registration And Upload:

User enters the personal information for registration and the user input fields are validated and records are stored in

Database. After registration the User can Login with his credentials and can upload source code. The uploaded source is

securely stored in server side. If you are uploading a source code it should in a zip format which can be done by any zip

until tools. The uploaded zip contents are automatically unzipped in code level in server side.

5.2 Reverse Engineering The Apk File:

In this Module, user can upload both source and apk files. The apk file is breaked by using APK Tool and the generated

(.dex) files are converted to (.jar) files by de2jar.The layout and resource files are retained. The jar files are extracted to

get the .class files. Now we use the jad API to convert the .class files to .java files. Then these files are written to the src

folder of android code base retaining the package name. Thus the Server automatically Decompile the .apk file by reverse

engineering.

5.3 Permission Check’s In Source Code:

Android applications contain much permission to use the services. Developer must declare the permission in manifest to

use that service. Once the permission is declared, the android application packager in the mobile phone will ask the users

for accepting the permission usage while application installation. For installing an application, the user has to approve all

the permissions that application’s developer has declared in the application manifest.

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (200-204), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 203
Novelty Journals

If all permissions are approved, the application is installed and receives group memberships. The group memberships are

used to check the permissions at runtime. Now the decompiled apk files are validated for permissions in the manifest.xml

file. Now our high level permission checking framework examines the code written for each permission in java files and

validates it. If the any of the permissions fails the validation process, it is tagged as Unused/Redundant permissions.

5.4 Removing Unused Permissions:

In this module, if unused permissions are declared, their respective service is also running in mobile. Missing permission

causes the application to crash. Adding too many of them is not secure. Injected malware can use those declared, yet

unused permissions, to achieve malicious goals. So the unused permissions found by our framework are removed in the

Manifest.xml file.

The modified/Permission checked source code is recompiled and harmless apk’s are generated which can be downloaded

using Qrcode. Only the uploaded source codes are recompiled

Fig.2 Data Flow For Permission Analysis System

6. BENEFITS OF PROPOSED SYSTEM

The proposed system will remove all unused permissions in the android applications. A static code level check is done on

the code. Missing permission causes the application to crash. Adding too many of them is not secure. In the latter case,

injected malware can use those unused permissions to achieve malicious goals. The unused permissions are called as

―permission gap‖. Permission gap results in insecure, suspicious or unreliable applications. QR codes are generated for

each recompiled applications

7. CONCLUSION

This paper concludes that extracted the permission checks and to removed the unused permissions to prevent the

permission gap and Applications were builded using Apache Ant tool and Qrcode were generated.Application are

downloaded using qr code

REFERENCES

[1] R. Valle _e-Rai, P. Co, E. Gagnon, L. Hendren, and V. Lam, and P.Sundaresan, ―Soot—a Java bytecode

optimization framework,‖ inProc. Conf. Centre Adv. Stud.Collaborative Res., 1999, p. 13.

[2] W. Enck, M. Ongtang, and P. McDaniel, ―On lightweight mobile phone application certification,‖ in Proc. ACM

Conf. Comput. Commun.Security, 2009, pp. 235–245.

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (200-204), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 204
Novelty Journals

[3] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, ―Scandroid: Automated security certification of android applications,‖

Dept. Comput.Sci., Univ. Maryland, College Park, MD, USA, Tech. Rep. CSTR-4991, 2009.

[4] D. Barrera, H. Kayacik, P. Oorschot, and A. Somayaji, ―A methodology for empirical analysis of permission-based

security models and its application to android,‖ in Proc. 17th ACM Conf. Comput.Commun. Security, 2010, pp. 73–

84.

[5] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, ―Analyzing inter-application Communication in android,‖ in

Proc. 9th Int.Conf. Mobile Syst., Appl. Services, 2011, pp.239–252.

[6] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, ―A study of android application security,‖ in Proc. 20th

USENIX Conf. Security,2011, p. 21.

[7] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel,and A. N. Sheth,:―Taintdroid An information-flow

tracking system for realtime privacy monitoring on smartphones‖ [7], in Proc.9th USENIX Conf. Operating Syst.

Des. Implementation, 2011.

[8] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, ―Android permissions demystified,‖ in Proc. ACM Conf.

Comput. Commun. Security, 2011, pp. 627–638

[9] A. Bartel, J. Klein, Y. LeTraon, and M. Monperrus, ―Dexpler: Converting android dalvik bytecode to jimple for

static analysis with soot,‖ in Proc. ACM SIGPLAN Int. Workshop State of the Art Java Program Anal., 2012, pp.

27–38.

[10] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey. (2012). ― Modeling and enhancing android’s permission system‖, Proc.

ESORICS [Online]. Available:http://link.springer.com/chapter/10.1007/978-3-642-33167-1_1

[11] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, ―Riskranker:Scalable and accurate zero-day android malware

detection,‖ in Proc. Int. Conf. Mobile Syst., Appl. Services, 2012, pp. 281–294.

[12] Y. Zhou, Z. Y. Wang, W. Zhou, and X. Jiang, ―Hey, you, get off of my market: Detecting malicious apps in official

and alternative android markets,‖ in Proc. 19th Netw. Distrib. Syst. SecuritySymp., 2012.

[13] C. Mann and A. Starostin, ―A framework for static detection of privacy leaks in android applications,‖ in Proc. 27th

Annu. ACM Symp. Appl. Comput., 2012, pp. 1457–1462.

[14] M. Grace,Y. Zhou, Z. Wang, and X. Jiang, ―Systematic detection of capability leaks in stock android smartphones,‖

in Proc. 19thAnnu. Symp. Netw. Distrib. Syst. Security, 2012.

[15] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, ―PScout: Analyzing the android permission specification,‖ in Proc.

ACM Conf. Comput.Commun. Security, 2012, pp. 217–228.

[16] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, ―Chex: Statically vetting android apps for component hijacking

vulnerabilities,‖in Proc. ACM Conf. Comput. Commun. Security, 2012, pp. 229–240.

[17] S. Bugiel, L. David, Dmitrienko, T. A. Fischer, A. Sadeghi, and B.Shastry, ―Towards taming privilege-escalation

attacks on android,‖ presented at the NDSS Symp., San Diego, CA, USA,2012.

[18] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosenberg, F.Shen, S. Y. Ko, and L. Ziarek, ―Flow permissions

for android,‖ in Proc. 28th IEEE/ACM Int. Conf. Automated Softw. Eng., 2013,pp. 652–657.

[19] Y. Zhou and X. Jiang, ―Detecting passive content leaks and pollution in android applications,‖ in Proc. 20th Netw.

Distrib. Syst.Security Symp., 2013.

[20] S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D.Octeau, and P.McDaniel, ―FlowDroid: Precise

context, flow, field,object-sensitive and lifecycle-aware taint analysis for android apps,‖ in Proc. 35th Annu. ACM

SIGPLAN Conf.

